A Secure Authentication Method for Grayscale Document Images

M.Mahalakshmi, C.Callsins Christyana
Dept. of Computer and Communication Engg., Sethu Institute of Tech., Virudhunagar, India

Abstract
In the process of sharing document image, the intruder may attacks the data easily. A secret image is embedded in another image called stego image and shared secretly. For secret sharing of information Shamir scheme is used and at the receiver side reverse Shamir scheme is used. An authentication signal is generated for each block of a grayscale document image, which, together with the binarized block content. This content is transformed into several shares using the Shamir secret sharing scheme. In the process of image authentication the tampered image block is marked and it is matched with the current block. If it does not match, self repair capability is applied to the tampered block and it is repaired automatically by a reverse Shamir scheme. Such image content authentication and self repair capabilities are useful for the security protection of the digital documents in many fields, such as important certificates, circuit diagrams, design drafts, signed documents, art drawings, scanned checks, last will and testament.

Keywords
Portable Network Graphics, Image Authentication, Secret Sharing

I. Introduction
Information hiding is the principle of steganography. It is used to protect any part of information or confidential messages from extensive modification created by the intruders. This information hiding is the powerful technique embeds in digital image to reduce the complexity and prevent the information from any modification. This digital image is a numeric representation of a two-dimensional image. Digital image authentication is an issue for the providers and producers of digital images such as health care organizations, law enforcement agencies and insurance companies. There are several met used in past. Wu and Liu[2] manipulated the so-called flappable pixels to create specific relationships to embed data for authentication and annotation of binary images. In this method numbers of digital images are used for business purpose. Cryptographic authentication is approach is used for authentication. The disadvantage is it affects visual quality. Yang and Kot[3] proposed a two-layer binary image authentication method, in which one layer is used for checking the image fidelity and the other for checking image integrity. In the method, a connectivity-preserving transition criterion for determining the flippability of a pixel is used for embedding the cryptographic signature and the block identifier. The major drawback is it occupies large memory. Later Yang and Kot[4] proposed a pattern-based data hiding method for binary image authentication in which three transition criteria are used to determine the flipabilities of pixels in each block, and the watermark is adaptively embedded in to embeddable blocks to deal with the uneven embeddability condition in the host image. In this method the disadvantage is high complexity. In the method proposed in [5], a set of pseudorandom pixels in a binary or halftone images are chosen and cleared, and authentication codes are accordingly computed and inserted into selected random pixels. In Tseng and Tsai’s method[6], randomly generated authentication codes are embedded into image blocks for used in image authentication, and so-called code holder is used to reduce image distortion resulting from data embedding. Lee at al.[7]Proposed a Hamming-code based method flips one pixel in each binary image block for embedding a watermark, yielding small distortion and low false negative rates. Lee et al.[8] similarly measure to select flappable pixels for the improved the method later by using an edge line purpose of reducing the distortion. But this method is not secure.

In proposed method secret image sharing with steganography and authentication is established. Steganography is data hiding techniques that provides security protection for digital image data. The proposed method is used to handle full color images and quality of the recovery results is nearly lossless. The Structure of this paper is described as follows: In section II deals with the proposed method, including authentication signal generation, share data embedding and tampered data repair and merits of proposed systems are described. Experimental results and a comparison of performance of the proposed method with other are shown in Section III, followed by conclusion in Section IV.

II. Proposed System
An image content authentication with a data repair capability for grayscale document image via the use of the Portable Network Graphics (PNG) image is proposed. An authentication signal is generated for each block of a grayscale document image and combined with the binarized block content, is transformed into several shares using the Shamir secret sharing scheme. The generated shares are embedded into an alpha channel plane. The alpha channel plane is then combined with the original grayscale image to form a PNG image. During the embedding process, the computed share values are mapped. In the process of image authentication, an image block is marked as altered if the authentication signal computed from the current block content does not match that extracted from the shares embedded in the alpha channel plane. Data repairing is then applied to each altered block by a reverse Shamir scheme. Protecting the security of the data hidden in the alpha channel is also measured. This project proposes an authentication method that deals with the binary-like grayscale document images instead of pure binary ones and simultaneously solves the problem of image tampering.

A. System Model

1. Pre-processing
In pre-processing method median filter is used to remove noise from the input test images. The median filter is a nonlinear digital filtering technique. Median filtering is very widely used in digital image processing.
2. Generation of Authentication Signals

Binarization: In binarization movement threshold technique is used. There are two gray values are calculated and applied to moment-preserving thresholding. Compute \( T = (g_1 + g_2) / 2 \), where \( T \) is a threshold to binarize the \( I \).

PNG format: Transform \( I \) into PNG format using alpha channel plane.

Beginning of loop: Block of 2x3 to get 6 pixels \( p_1, p_2, p_3, p_4, p_5, p_6 \).

Creation of authentication signals: Generate a 2-bit authentication signal

\[
\begin{align*}
\text{s} &= a_1 * a_2 \\
a_1 &= p_1 \oplus p_2 \oplus p_3 \\
a_2 &= p_4 \oplus p_5 \oplus p_6
\end{align*}
\]

3. Creation and Embedding of Shares

Creation of data for secret sharing: Concatenate the 8 bits of \( a_1, a_2, \) and \( p_1 \) through \( p_6 \) to form an 8-bit string & divide the string into two 4-bit segments, and transform the segments into two decimal numbers and \( m_1, m_2 \) respectively.

Partial share generation: Set \( p, c_i, x_i \) values & generate six partial shares \( q_1 \) through \( q_6 \).

Mapping of the partial shares: Due to mapping just add 238 to six partial shares \( q_1 \) through \( q_6 \) and get \( q_1' \) through \( q_6' \). The total transparency range is 238 to 254.

Embedding two partial shares in the current block: select the first two pixels in the raster-scan order, and replace their values by \( q_1' \) and \( q_2' \) respectively.

End of loop: If there exists any unprocessed block in \( I_b \), then go to beginning of the loop.

Otherwise, take the final \( I \) in the PNG format as the desired stego-image \( I' \).

4. Extraction of the embedded two representative gray values

Binarization of the stego-image: Compute \( T = (g_1 + g_2) / 2 \), and use it as a threshold to binarize \( I' \). Binary version \( I_b' \) of \( I \) with ‘0’ represents \( g_1 \) and ‘1’ represents \( g_2 \).

5. Verification of the Stego Image

Beginning of loop: Take an unprocessed block \( B_b' \) from \( I_b' \) with pixel values \( p_1 \) through \( p_6 \).

Extraction of the hidden signals: Extract the hidden authentication signal by subtracting 238 from each \( q_1' \) & \( q_2' \) and extract the two values of \( d \) and \( c_1 \), and transform \( d \) and \( c_1 \) into two 4-bit binary values & concatenate them to form an 8-bit string.

Computation of the authentication signal from the current block content: Compute a 2-bit authentication signal \( s' = a_1' * a_2' \).

Matching of the hidden and computed authentication signals and marking of tampered blocks: Match \( s \) and \( s' \) by checking if \( a_1 = a_1' \) and \( a_2 = a_2' \).

End of loop: If there exists any unprocessed block in \( I_b' \), then go to beginning of the loop; otherwise, continue.

6. Self Repairing of the Original Image

Extraction of the remaining partial shares: Perform the following steps to extract the remaining four partial shares. Use key to collect the four pixels and take out the respective data \( q_3', q_4', q_5', \) and \( q_6' \) embedded in them. Subtract 238 from each of \( q_3' \) through \( q_6' \) to obtain \( q_3 \) through \( q_6 \) respectively.
Table 1: Comparison of document image authentication methods.

<table>
<thead>
<tr>
<th></th>
<th>Distortion in stego-image</th>
<th>Repair capability</th>
<th>Distribution of authenticated image-parts</th>
<th>Manipulation of data embedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu and Liu [2]</td>
<td>Yes</td>
<td>No</td>
<td>Non-blank part</td>
<td>Pixel fippability</td>
</tr>
<tr>
<td>Yang and Kot [3]</td>
<td>Yes</td>
<td>No</td>
<td>Non-blank part</td>
<td>Pixel fippability</td>
</tr>
<tr>
<td>Yang and Kot [4]</td>
<td>Yes</td>
<td>No</td>
<td>Non-blank part</td>
<td>Pixel fippability</td>
</tr>
<tr>
<td>Tzeng and Tsai[6]</td>
<td>Yes</td>
<td>No</td>
<td>Entire image</td>
<td>Pixel replacement</td>
</tr>
<tr>
<td>Proposed method</td>
<td>No</td>
<td>Yes</td>
<td>Entire image</td>
<td>Alpha channel Pixel replacement</td>
</tr>
</tbody>
</table>

Comparison of the capability of the proposed method with those of four existing methods is shown in Table1. All the proposed method will create alteration in the stego-image during the authentication process. More significantly, only the proposed method has the capability of repairing the tampered parts of an authenticated image.

IV. Conclusion
A secret sharing method for binary grayscale document images has been proposed. In this method an image authentication and if an error occurs, data repair capability is available. By using Shamir method, the generated signal is converted into shares, and then they are allowed to pass through the alpha channel plane and form a stegoimage. The image is in the PNG format. The undesired opaque effect visible in the stego-image coming from embedding the partial shares has been eliminated by mapping the share values to a small range of alpha channel values near their maximum transparency value of 255. In the process of image block authentication, an image block is marked as tampered, if the computed authentication signal does not match with the corresponding partial shares in the alpha channel plane, then data repairing is applied to each tampered block by a reverse Shamir scheme. This is used to manipulate the original content of block from untampered shares obtained.

References

M. Mahalakshmi received her B.E. degree in Electronics and Communication engineering in Vickram College of engineering, Sivagangai in 2012. She is currently pursuing her M.E degree in Computer and Communication Engineering in Sethu Institute of Technology, Tamil Nadu, India.

C. Callins Christiyana received her B.E degree in Computer Science and Engineering in National College of Engineering, Virudhunagar. She has received her M.Tech degree in M.S University, Thirunelveli. She is currently pursuing her Ph.D degree in Anna University, Chennai.