
International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

31

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

Multicore Processor, Parallelism and Their
Performance Analysis

IRakhee Chhibber, IIDr. R.B.Garg
IResearch Scholar, MEWAR University, Chittorgarh

IIFormer Professor, Delhi School of Professional Studies & Research (Affiliated to GGSIP Uni., Delhi)

Introduction
Understanding the behavior and architecture of a multi-core
processor is necessary to proficiently analyze its performance
[Chandramowlishwaran10]. This section defines a single core
processor, multi-core processors, the need of multi core processor.
The next section introduces different types of parallelism that
impact multi-core processor performance. The subsequent sections
apply these concepts in a performance analysis context, introducing
techniques for performance measurement and analytical modeling.
This paper assumes that the analyst is examining the performance
of a given application on a multi-core processor, or different types
of multi-core processors, seeking to quantify and understand why
certain performance characteristics are observed. The First Section
of this paper will give a brief introduction about the different types
of CPUs depending upon the number of cores present in it.

Types of CPU Based on Number of Cores
Single Core CPU The single-core CPU utilizes one core inside
the processor. This was the very first type of CPU, and today, is
not used in many machines. The Figure 1 will illustrate the single
core CPU chip.

Fig.1 : Single Core CPU Chip

These types of CPUs have distinct advantages and
disadvantages.

Advantages
• Uses less power: It takes less power to run a single core CPU.

Quad-core and dual core use up a lot of energy, which is not
a problem with machines that are plugged into the wall, but
it can drain laptop batteries quickly.

• Runs cooler: Using less power means there’s less heat
generated by the core.

Disadvantages
• Runs slower: In cases where the computer specs are

comparable, the single-core processors run slower that multi-
core processors. They simply do not have as much computing
capacity as the multi-core systems.

• Freezing: Many of today’s software programs use up a lot
of computing power. Often, a user will use many programs,
which overloads the CPU and the computer simply freezes
to stop the user from opening any more programs.

The Multi-Core CPU
Multi-core processors, as the name implies, contain two or
more distinct cores in the same physical package. In this design,
each core has its own execution pipeline and each core has the
resources required to run without blocking resources needed by
the other software threads. The multi-core design enables two
or more cores to run at somewhat slower speeds and at much
lower temperatures. Multi-core processors are MIMD because
different cores execute different threads (Multiple Instructions),
operating on different parts of memory (Multiple Data) and they
are also a shared memory multiprocessor in which all cores share
the same memory.

Fig. 2 : Multi Core CPU Chip

Abstract
Multicore Central Processing Units (CPU) are becoming the standard for the current era of processors through the significant
level of performance that CPUs offer. This includes multiple multicore architectures, different level of parallelism, different levels
of performance, and with the variety of architectures, it becomes necessary to compare multicore architectures to make sure that
the performance aligns itself with the expected specifications. This paper provides an overview to multi-core processors, multi-core
processor parallelism and performance measurement for multi-core Central Processing Units (CPUs).

Keywords
Multi-core processors, multi-core CPUs, performance measurement, parallelism

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

32

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

Multi-core is a design in which a single physical processor contains
the core logic of more than one processor for example – when an
Intel Xeon processor were opened up and inside were packaged
all the circuitry and logic for two (or more) Intel Xeon processors.
The multi-core design puts several such processor “cores” and
packages them as a single physical processor. The goal of this
design is to enable a system to run more tasks simultaneously
and thereby achieve greater overall system performance. The
following are the examples of multi core processors.

Dual Core CPU
The dual-core CPU is a processor with two execution cores in a
single integrated circuit. These cores act as a single unit, but they
will each have their own controller and cache, allowing them to
perform faster than single-core processors

Fig. 3 : Dual Core CPU Chip – One Chip having two core using
different threads

Advantages
1. Performs tasks faster: Dual-core CPUs run faster than single-

core ones, especially in instances where there are multiple
processes at one time. When a single-core processor has to
do two different things, it must stop what it’s doing and then
switch to the next task. This switching is what creates lags,
and in dual-core processors, this switching between tasks
is reduced because there are two processors that can do the
task at once.

2. Reduced costs: Even before there were dual-core CPUs,
users were able to build dual-processor units that had the
computing power of two computers. So without purchasing
two computer we can fit dual core processor into a single
motherboard and computer.

Disadvantages
1. Wasted computer power: While dual-core CPUs certainly

can blaze through numerous applications, most regular users
don’t need that much power. Checking email, surfing through
text-based sites, and typing documents don’t actually use
up a lot of power. Unless the person uses graphics or video
programs, the dual-core almost seems excessive.

2. Compatibility with software: Dual-core CPUs will run any
software, but the software itself has to be programmed for
the dual-core CPU. Programmers have to tell the software
that when one CPU is overloading, it needs to switch some
of the tasks over to the second CPU.

The Quad-Core CPU
Quad-core CPUs contain four processors. Depending on the
manufacturer, this can mean that four cores are on the same
integrated circuit or the same chip package. Since these are a
little more complicated that dual-core CPUs, there are some
variations on this design. For example, some chips may or may not
share resources like caches. It’s also possible to have a quad-core
processor with the same types of chips (homogeneous multi-core
systems) or different chips (heterogeneous multi-core systems).

Fig.4 : Quad Core CPU Chip having 4 cores on one single chip

Advantages
1. Multitasking: The quad-core system is one of the best systems

for multi-tasking. With the help of many cores, it can do
many processes at once and also maintain the integrity of
the system.

2. Run intensive applications: Applications that use up a lot
of resources, such as graphics programs, video editors, and
anti-virus programs, can run smoothly at the same time.

3. Less heat and power consumption: Most of the newer quad-
core chips are so small and efficient; they can actually use
less power and generate less heat than single-core systems.

4. Use for long term: The problem with Moore’s Law is that
it practically guaranteed that your computer would be
obsolete in about 24 months. Since few software programs
are programmed to run on dual-core, much less quad-
core, these processors are actually way ahead of software
development.

Disadvantages
1. Lowers battery life: Depending on the type of applications,

quad-core systems can drain batteries faster.
2. Available software: Software needs to be programmed to

take full advantage of quad-core CPUs, so not all programs
can utilize the four processors.

3. Hardware compatibility: Multi-core processors are compatible
with certain motherboards, so it’s not as simple as swapping
out the old CPU with a brand new one. Purchase of a new
motherboard may also necessitate the purchase of other
components that are compatible with the motherboard.

The different companies like Intel® Pentium® 4 and Intel Xeon
processors today already use Hyper-Threading Technology (HT
Technology) to execute multiple programs simultaneously. But HT
Technology and multi-core designs differ significantly and deliver
different performance characteristics. The key differentiator is
basically - how a program’s instructions are executed and which
technology has been used like multithreading, Hyper-threading

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

33

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

or Muti-core.

Technology Used to execute multiple programs
(Multithreading, Hyper-Threading, or Multi-Core?)
All the programs are made up of execution threads. These threads
are sequences of related instructions. In the early days of the PC,
most programs consisted of a single thread. The operating systems
in those days were capable of running only one such program at a
time. The result was-as some of us painfully recall-that your PC
would freeze while it printed a document or a spreadsheet. The
system was incapable of doing two things simultaneously.
Innovations in the operating system introduced multitasking in
which one program could be briefly suspended and another one
run. By quickly swapping programs in and out in this manner,
the system gave the appearance of running the programs
simultaneously. However, the underlying processor was, in fact,
at all times running just a single thread.
By the beginning of this decade, processor design had gained
additional execution resources (such as logic dedicated to floating-
point and integer math) to support executing multiple instructions
in parallel. The company reasoned it could make better use of
these resources by employing them to execute two separate
threads simultaneously on the same processor core. Intel named
this simultaneous processing Hyper-Threading Technology and
released it on the Intel Xeon processors in 2003.
According to Intel benchmarks, applications that were written
using multiple threads could see improvements of up to 30%
by running on processors with HT Technology. Two programs
could now run simultaneously on a processor without having
to be swapped in and out. To induce the operating system to
recognize one processor as two possible execution pipelines, the
new chips were made to appear as two logical processors to the
operating system.

Fig. 5 : Technology in different time processor chip

HT Technology enables two threads to execute
simultaneously on a single processor core
The performance boost of HT Technology was limited by the
availability of shared resources to the two executing threads. As a
result, HT Technology cannot approach the processing throughput
of two distinct processors because of the contention for these
shared resources. To achieve greater performance gains on a single
chip, a processor would require two separate cores, such that each
thread would have its own complete set of execution resources.

The Need For Multicore CPU
The high performance speed achieved by multi-processors (multiple
CPUs on different chips attached to the same motherboard),
produce undesirably high power consumption, and as a result,
alternative research trends encouraged the production of multicore
CPUs in order to reduce power consumption, while simultaneously
increasing the processing speed. The architecture of multicore
CPUs provided the hungry applications and devices, speed and
performance with lower power consumption.

Parallelism and Performance In Multi-Core CPUS
Because multi-core CPUs exploit parallelism to enhance
performance, an understanding of the key types of parallelism
is important to analyzing performance. Basic three types of
Parallelism is discussed here. The Instruction-level parallelism,
thread-level parallelism, and data-level parallelism are all
employed by various multi-core CPU architectures, and have
different impacts on performance that must be understood to
conduct thorough performance analysis.

Instruction-Level Parallelism
The instruction-level parallelism (or ILP) involves executing
certain instructions of a program simultaneously which would
otherwise be executed sequentially [Goossens10], which may
positively impact performance depending on the instruction
mix in the application. Most modern CPUs utilize instruction-
level parallelization techniques such as pipelining, superscalar
execution, prediction, out-of-order execution, dynamic branch
prediction or address speculation [Goossens10]. However, only
certain portions of a given program's instruction set may be
suitable for instruction-level parallelization, as a simple example
illustrates below in Figure

Fig. 6 : Instruction Level Parallelism

A simple example of instruction-level parallelism
Because steps 1 and 2 of the sequential operation are independent
of each other, a processor employing instruction-level parallelism
can run instructions 1.A. and 1.B. simultaneously and thereby
reduce the operation cycles to complete the operation by 33%. The
last step must be executed sequentially in either case, however,
as it is dependent on the two prior steps.

Thread-Level Parallelism
The thread-level parallelism (or TLP), involves executing
individual task threads delegated to the CPU simultaneously
[Blake10][Ahn07]. Thread-level parallelism will substantially
impact multi-threaded application performance through various
factors, ranging from hardware-specific, thread-implementation
specific, to application- specific, and consequently a basic
understanding is important for the analyst. Each thread maintains
its own memory stack and instructions, such that it may be thought
of as an independent task, even if in reality the thread might not

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

34

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

really be independent in the program or operating system. Thread-
level parallelism is used by programs and operating systems that
have a multi-threaded design. Conceptually, it is straightforward
to see why thread-level parallelism would increase performance.
If the threads are truly independent, then spreading out a set of
threads among available cores on a processor would reduce the
elapsed execution time to the maximum execution time of any of
the threads, compared to a single threaded version which would
require additive execution time of all of the threads. Ideally,
the work would also be evenly divided among threads, and the
overhead of allocating and scheduling threads is minimal.

 Fig. 7 : Thread-Level Parallelism

A conceptual visualization of thread-level parallelism
The above Figure 7, illustrates these conceptual differences
between single threading and thread-level parallelism, assuming
independence and no additional per-thread overhead. Performance-
impacting factors include the load balance, level of execution
independence, thread-locking mechanisms, scheduling methods,
and thread memory required. Further, data-level parallelism among
the distributed threads may impact performance, as the subsequent
section discusses. The thread implementation library in both the
operating system and the specific application will also impact
performance [Blake10] [Moseley07].

Data-Level Parallelism
The data-level parallelism (or DLP), involves sharing common
data among executing processes through memory coherence,
improving performance by reducing the time required to load and
access memory [Ahn07]. For the analyst, identifying application
areas utilizing data-level parallelism will assist in understanding
performance characteristics on multi-core processors. In the context
of a multi-core CPU, data-level parallelism in the cache memory
shared by cores can have a substantial impact on performance
[Chandramowlishwaran10][Ahn07]. Here, the executing processes
running on multiple cores will be called threads. Performance gains
are expected when the threads read from the same data in the shared
memory. This scenario allows one copy of the data to be used by
the multiple threads, reducing the number of copy operations and
thus execution time. When the threads have no data in common,
each thread must maintain a copy of its data and no gains are
available. However, if the multiple requests to this memory
exceed its bandwidth, increasing threads may produce negative
performance impacts. Further performance impacts may also occur
during write operations. Multiple threads attempting to write to
the same memory location at the same time must wait to resolve
conflicts. Schemes to handle such situations are well known in

computer science, such as spin-locks. The performance impact will
depend upon the penalties involved with the scheme employed and
how often such conflicts occur. Generally speaking, having threads
write to different areas of shared memory would be preferable in
lessening the likelihood of incurring these penalties. Non-Uniform
Memory Architecture (NUMA) may assist, as it places data used
by one particular core physically closer to that core in memory
[Chandramowlishwaran10]. Bandwidth may also be an important
factor as the number of threads increases on a multi-core processor.
Limited cache size (cache misses), limited bandwidth, off-cache
latency, and other aspects will have impacts on performance,
though data-level parallelism can improve performance in certain
situations. Further, the interaction between instruction-level and
data-level parallelism affects performance; Flynn's taxonomy is
a useful framework to analyze these interactions [Flynn72]. In
summary, observations about data-level parallelism in a particular
application are crucial to analyzing its performance on multi-core
CPUs because memory is frequently the limiting factor. This section
introduced three key types of parallelism employed by multi-core
to enhance performance. Instruction-level parallelism, thread-level
parallelism, and data-level parallelism have varying performance
impacts, and consequently understanding, identifying, and
studying these factors will lead to improved performance analysis.
The next section introduces tools for empirically measuring and
benchmarking multi-core CPUs, then provides an example that
uses these tools and the concepts in prior sections, using empirical
measurements to make performance observations

The Need For Performance Analysis
Performance analysis is a criterion that defines the performance
of a system, and is required at every stage of the computer system
life-cycle, to ensure high performance at a given cost. The demand
for performance analysis was derived by radical changes in a
number of elements including,

 The present day computer user who is more demanding than •
computer users 20 years ago.
The popularity of computer technology resulted in an •
inundation in the computer market of different computer
manufactures, each differing in performance. Such changes
require performance analysis that meet user’s demands and
help to select the best alternative which provides higher
performance at given cost implementing trade-offs between
what each technique provides and the required criteria in
mind.
In this paper i will represent the different ways used to •
evaluate multicore CPUs performance.

Evaluating multicore CPU performance
This section explores the different methods used in evaluating
multicore CPUs performance, with the metrics, analysis, and
factors, varying performance based on requirements.

Evaluation Techniques
The first step in performance evaluation is to select the proper
evaluation technique. The main techniques are: analytical
modeling, simulation and measurement. In evaluating multicore
CPUs performance, the techniques used are depending on
different considerations. However, we cannot trust the result of
one technique unless we validate that result with other techniques.
For example, we cannot trust the analytical modeling technique
without validating the result with simulation or measurement.

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

35

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

That is, we require at the use of two techniques to get an accurate
result. The considerations for selecting the appropriate technique
listed in table below [Jain91].

Table 1 : Evaluation Techniques Criteria

The above table shows the consideration in order of importance
and the result may be wrong or misleading in all cases. For
example, analytical modeling can be done at any stage of the
system life-cycle. Although it takes smaller amounts of time
than simulation and measurement because they vary with time,
analytical modeling needs no tools for analysis; unfortunately it
may give less accurate.

Evaluation Metrics
Performance metrics are the measurements of the system
performance or activity [Metrics], and the metrics selection
depends upon the services provided by the system because
metrics quantify the required output of the system. Metrics can
be classified in three main classes:
• HB (Higher is Better): include metrics like throughput, higher

values for this metric are preferred.
• LB (Lower is Better): include metrics like execution time,

where lower values for this metrics preferred.
• NB (Nominal is Best): include metrics like power, with the

median values being optimal in this case.

The list of metrics that are used in evaluating multicore CPUs
performance for applications is given below.
• Throughput: Average rate of successful processes

[Sharma09].
• Response time: The time that the user finishes the request

and the system starts a response.
• Execution time: The time needed to complete program

execution [Monchiero06].
• Energy: The power needed to run a program

[Monchiero06].
• Memory bandwidth: the rate of data sustained from the CPU

core to the RAM (Random Access Memory) [Kayi07].
• Memory latency: the time delay between the memory

controller signaled the memory module to access data
from the RAM and the time the data become available for
the memory module, also known as CAS (Column Address
Strobe) latency [Monchiero06, CAS].

• Percent of memory contention: the percentage among the cores
trying to access the RAM at the same time [Monchiero06].

This above list is an example of metrics used in multicore
CPUs performance evaluation. Generally the metrics are related
to three criteria (1) time (2) rate and (3) resources, which can
be measured and used to determine the system performance.
Performance metrics varies upon the services provided by the

system, in multicore CPU systems metrics can be chosen based
on the purpose of the performance analysis and which type of
performance requirements are required for the program to run
efficiently by taking advantage of multicore CPU architectures.

Factors Affects The Performance
Factors are the performance parameters that we want to study
to see their effects on the system. Factors also depend upon the
required performance needed to utilize the CPU and get the
expected outcome from it.
• Memory: Memory architecture used and memory speed can

affect the performance of the multicore CPU [Sharma09].
• Scalability: Affects performance based on the rate of increase

of the workloads (i.e. tasks) [Sharma09, Carpenter07].
• I/O bandwidth: Can affect the performance by utilizing the

CPU cores which leads to more resources consumption
without performance increasing [Sharma09].

• Inter-core communication: The interaction between cores in
multicore CPU's can be implemented by various mechanisms,
affecting overall CPU performance due to shared workloads
between cores [Sharma09].

• Operating system (OS): OS is the manager for the CPU and
it assigned tasks to cores based on a scheduling mechanism,
affecting the multicore CPU performance [Sharma09,
Pase05].

• CPU clock speed: Clock speed has an impact on processor
performance with slow clock speed reducing throughput
[Pase05].

• Numbers of cores: Affect the CPU performance as multicore
architecture workload is divided between the cores
[Pase05].

• Cache coherent: Multicore architectures use different caching
mechanisms as the cache is shared among the cores, causing
cache coherent to affect CPU performance [Kayi07, Kumar05,
Chang06, Zheng04, Yeh83].

These are some examples of the factors affecting multicore CPU
performance, and for the analysis of each factor under study we
will define ways to optimize the performance by analyzing the
effects of the factors and interpret the result to get the optimal
expected performance.

Example of Multicore CPU Performance Analysis
There is an example of performance analysis of processes for
multicore CPUs that will assist in selecting the proper CPU for
a machine specification.

Server virtualization of Multicore CPU
Intel IT (Information Technology) team evaluated server
performances based on three Intel multicore CPU servers (A Four-
socket server based on Quad-Core Intel Xeon CPU X7350 with
16 cores, a dual-socket server based on Quad-Core Intel Xeon
CPU X5355 with 8 cores and a dual-socket server based on Intel
Dual-Core Xeon CPU 5160 with four cores) [Carpenter07]. In
comparing the performance of the multicore CPUs, the Intel IT
team targeted the speed of the CPUs and the power efficiency. Due
to CPU clock speed, runtime used to measure the performance on
each CPU. The data was normalized. Furthermore, the normalized
workload consists of VMs (Virtual Machines) and a copy of a
synthetic CPU intensive DB application in each VM.
W-M/Job (Watt-minute per job) metrics was utilized to measure

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

36

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

CPU power efficiency with an increasing workload to test the
scalability factors of the CPUs [Carpenter07]. The results from
[Carpenter07] show that the three servers different levels of
scalability in terms of power consumption. As the VMs number
increased the run time remains constant until the workload equals
the number of cores. After the number of VMs exceeds the number
of cores, the run time begins to increase, the below figure shows the
result of the servers based on Intel multicore CPU run times.

Fig. 8 : Run Time

We can observe that the Intel X7350 CPU run time is almost
constant, until the number of VM reach 16, then it starts to increase.
Alternatively, in the case of the Intel X5355, the run time starts to
increase around 6 VMs, and around 4 VMs were running the Intel
5760. Another approach that is useful in performance evaluation
of the CPUs is to measure the power consumption of the different
CPUs based upon increasing workload to test the scalability
[Carpenter07]. The result of the test shows that Quad-core Intel
Xeon CPU X7350 based servers consumed more power than its
alternatives due to the larger number of cores. Consuming at an
average of 495 W (Watts) on 2 VMs running, 478 W for Quad-core
Intel Xeon CPU X5355, and average of 330 W for Dual-core Intel
Xeon CPU 5160. As the number of VMs increased, the servers
became more power efficient which can be observed from figure
2. The Quad-core Intel Xeon CPU X7350 based servers with
the maximum workload showed the power consumption per job
decrease from the start and that is due to scalability of the CPU.
This Figure shows the increasing of power consumption due to
the number of VMs.

Fig. 9

Power Consumption
This section introduced examples of how performance analysis
works. By comparing the multicore CPUs, we can use the result to
help us make proper decisions in terms of selecting the appropriate
CPU for a required performance level.

Summary and Conclusion
Now a days, CPU performance is increasing rapidly. The number
of cores on the chip increases at each release of a new generation
of a CPU. With multicore CPU becoming not only faster but
more power efficient depends on the required demand. To
maintain relevant profiling of these systems, we need to evaluate
the CPU depending on the workload we expect to process. We
have addressed the techniques used to evaluate multicore CPU
performance, metrics, factors, benchmark tools used to measure
multicore CPU performance, and we provided an example of
performance evaluation for multicore CPUs. Different approaches
used in multicore CPU performance analysis depending on the
purpose of the study. We are expecting to see new approaches in
multicore CPU performance analysis as multicore CPU production
increases to new levels.

List of Acronyms
• CPU - Central Processing Unit
• RAM - Random Access Memory
• HB - Higher is Better
• LB - Lower is Better
• NB - Nominal is Best
• CAS - Column Address Strobe
• OS - Operating System
• IT - Information Technology

 References
[1] [Ahn07] J. H. Ahn, M. Erez, and W. J. Dally, "Tradeoff

between Data-, Instruction-, and Thread-Level Parallelism
in Stream Processors," Proceedings of ICS '07, 18-20
June 2007, 1-12, http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.95.5616. Analyzes the instruction-
level, data-level, and thread-level parallelism of the Stream
Processor architecture.

[2] [Blake10] G. Blake, R. G. Dreslinski, T. Mudge, and K.
Flautner, "Evolution of Thread-Level Parallelism in Desktop
Applications," ISCA 10, June 2010, 302-313, http://
www.eecs.umich.edu/~blakeg/docs/Desktop_TLP_Study_
ISCA2010.pdf. Analyzes the thread-level parallelism of a
wide range of applications on different operating systems
running on multi-core CPU and GPU hardware.

[3] [Carpenter07] Carpenter R. E., “Comparing Multi-Core
Processors for Server Virtualization, Intel Corporation,
August 2007,

[4] [Chandramowlishwaran10] A. Chandramowlishwaran, K.
Madduri, and R. Vuduc, "Diagnosis, Tuning, and Redesign
for Multicore Performance: A Case Study of the Fast
Multipole Method," SC '10 Proceedings of the 2010 ACM/
IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis, November
2010, 1-12, http://portal.acm.org/citation.cfm?id=1884654.
Describes a step-by-step approach to modeling, analyzing,
and tuning a program on a multi-core processor system.

[5] [Chang06] Chang J., Sohi G. S., â€oeCooperative Caching
for Chip Multiprocessorsâ€ , ISCA Proceeding 33th annual
international symposium on Computer Architecture, Pages
264 - 276, IEEE Computer Society, Washington, DC, 2006,
ISBN: 0-7695-2608-X.

[6] [Flynn72] M. J. Flynn, "Some Computer Organizations and
Their Effectiveness," IEEE Transactions on Computers,Vol.

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

37

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

C-21, No. 9, September 1972, 948-960, http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=5009071. Develops
a hierarchical model of computer organizations for
instructions and data streams.

[7] [Goossens10] B. Goossens, P. Langlois, D. Parello, and
E. Petit, "Performance Evaluation of Core Numerical
Algorithms: A Tool to Measure Instruction Level Parallelism,"
hal-00477541, version 1, 29 April 2010, 1-4, http://hal.
archives-ouvertes.fr/docs/00/47/75/41/PDF/para10.pdf.
Measures and analyzes the instruction-levelparallelism of
core numerical algorithms in terms of running time and
proposes a tool to assist in analysis.

[8] [Jain91] Jain R., The Art of Computer System Performance
Analysis , Wiley-Interscience, New York, NY, April 1991,
ISBN: 0471503361.

[9] [Kayi07] Kayi A. , Yao W. , EL-Ghazawi T. , Newby G.
, Experimental Evaluation of Emerging Multi-core
Architecturesâ€ , Parallel and Distributed Processing
Symposium, IEEE International, March 2007, http://cecs.
uci.edu/~papers/ipdps07/pdfs/PMEO-PDS-21-paper-1.
pdf.

[10] [Kumar05] Kumar R., Zyuban V., Tullsen D. M.,
Interconnections in Multi-core Architectures: Understanding
Mechanism, Overheads and Scaling , ISCA 05 Proceeding
32th annual international symposium on Computer
Architecture, Pages 408 - 419, IEEE Computer Society,
Washington, DC, 2005, ISBN: 0-7695-2270-X. [Metrics]
"Performance Metrics", Wikipedia the free encyclopedia,
http://en.wikipedia.org/wiki/Performance_metric.

[11] [Monchiero06] Monchiero M. , Canal R. , Gonzalez A. ,
â€oeDesign Space Exploration for Multicore Architectures:
A Power/Performance/Thermal View , Proceedings of the
20th annual international conference on Supercomputers,
Pages 177- 186, ACM New York, NY,2006, ISBN:1-59593-
282-8.

[12] [Moseley07] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald,
and R. Peri, "Shadow Profiling: Hiding Instrumentation
Costs with Parallelism," CGO 07, 2007, 1-11, http://portal.
acm.org/citation.cfm?id=1252541&dl=ACM&coll=DL.
Evaluates the performance and accuracy of a shadow
profiling technique for inter-procedural path profiling and
value profiling with minimal overhead.

[13] [Pase05] Pase D. M., Eckl M. A., A Comparison of Single-
Core and Dual-Core Opteron Processor Performance
for HPC , Technical report, IBM Developer Works, IBM
Corporation, 2005, ftp://ftp.support.lotus.com/eserver/
benchmarks/wp_Dual_Core_072505.pdf

[14] [Sharma09] Sharma A. , Kumble M. , Moktali P. R. , Siri
H, â€oePerformance analysis of Multicore Systems ,
Intel, March 2009,http://software.intel.com/en-us/articles/
performanceanalysis-of-multicore-systems-4

[15] [Yeh83] Yeh P. C. C., Patel J. H., Davison E. S., â€oeShared
Cache for Multiple-Stream Computer Systems , IEEE
Transactions on Computers, Vol. 32, Issue 1, pages 38 - 47,
IEEE Computer Society, Washington, DC, 1983.

[16] [Zheng04] Zheng Y., Davis B. T., Jordan M., Performance
Evaluation of Exclusive Cache Hierarchies , ISPASS '04
Proceedings of the 2004 IEEE International Symposium
on Performance Analysis of Systems and Software, Pages
89 - 96, IEEE Computer Society, Washington, DC, 2004,
ISBN: 0-7803-8385-0.

Rakhee Chhibber is working as an
Assistant Professor, in a college named
RDIAS(Rukmini Devi Institute of Advanced
Studies – affiliated with GGSIPU). I am
doing my Phd. In computer Science from
Mewar University. I am having total 22
years of experience, one year industry and
21 years academics in various colleges and
institute of high repute.

Dr. R.B.Garg is a retired Professor from Delhi University. He
had also worked with different colleges affiliated from different
universities. He has a number of publications to his credit in
various National and International Journals. He has written
a book ‘Contributions to Hardware and Software Reliability’
published by World Scientific. He has worked in various capacities
in Delhi University, GJU, GGSIPU and various other institutions
of high repute.

