
International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

170

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

A New Intrusion Detection System for Modern Web-sites
IJ. Srinivasarao IIM. Mahesh Kumar

IStudent, IIAssistant Professor
I,IIDep. of IT, LBRCE, JNTUK University, Mylavaram, Andhra Pradesh, India

,

I. Introduction
All most all works are now a day is being done over internet
including selling and purchasing also. Web-Delivered Services and
applications have increased in both reputation and complication
over the past few years. Daily tasks, such as banking, travel, and
social networking, are all done via the web. Such services naturally
employ a web server front end that runs the application user interface
logic, as well as a back-end server that consists of a database or file
server. Due to their omnipresent use for personal and/or corporate
data, web services have always been the target of attacks. These
attacks have freshly become more different, as awareness has
shifted from attacking the front end to exploiting vulnerabilities
of the web applications [6], [5], [1] in order to fraudulent the
back-end database system [14] (e.g., SQL injection attacks [2],
[3]). A superfluity of Intrusion Detection Systems (IDSs) currently
examines network packets individually within both the web server
and the database system. However, there is very little work being
performed on multitier Anomaly Detection (AD) systems that
generate models of network Behavior for both web and database
network interactions. In such multitier architectures, the back-end
database server is often protected behind a firewall while the web
servers are remotely accessible over the Internet. Unfortunately,
though they are protected from direct remote attacks, the back-
end systems are susceptible to attacks that use web requests as a
means to exploit the back end. To protect multitier web services,
Intrusion detection systems have been widely used to detect known
attacks by matching misused traffic patterns or signatures [4],
[10-12]. A class of IDS that leverages machine learning can also
detect unknown attacks by identifying abnormal network traffic
that deviates from the so-called “normal” behavior previously
profiled during the IDS training phase. Individually, the web IDS
and the database IDS can detect abnormal network traffic sent to
either of them. However, we found that these IDSs cannot detect
cases wherein normal traffic is used to attack the web server and
the database server. For example, if an attacker with non admin
privileges can log in to a web server using normal-user access
credentials, he/she can find a way to issue a privileged database
query by exploiting vulnerabilities in the webserver. Neither the
web IDS nor the database IDS would detect this type of attack
since the web IDS would merely see typical user login traffic and
the database IDS would see only the normal traffic of a privileged
user. This type of attack can be readily detected if the database IDS

can identify that a privileged request from the web server is not
associated with userprivileged access. Unfortunately, within the
current multithreaded web server architecture, it is not feasible to
detect or profile such causal mapping between web server traffic
and DB server traffic since traffic cannot be clearly attributed to
user sessions. In this paper, we present Double Guard, a system
used to detect attacks in multitier web services. Our approach
can create normality models of isolated user sessions that include
both the web frontend (HTTP) and back-end (File or SQL)
network transactions. To achieve this, we employ a lightweight
virtualization technique to assign each user’s web session to a
dedicated container, an isolated virtual computing environment.
We use the container ID to accurately associate the web request
with the subsequent DB queries. Thus, Double Guard can build
a causal mapping profile by taking both the web server and DB
traffic into account.

II. Threat Model And System Architecture
We primarily set up our threat model to comprise our assumptions
and the types of attacks we are aiming to defend against. We
assume that both the web and the database servers are susceptible.
Attacks are network borne and come from the web clients; they
can launch application layer attacks to conciliation the web servers
they are connecting to. The attackers can bypass the web server to
openly attack the database server. We presuppose that the attacks
can neither be detected nor barred by the current web server IDS,
that attacker may take over the web server after the attack, and that
later they can get hold of full control of the web server to launch
consequent attacks. For example, the attackers could modify the
application logic of the web applications, eavesdrop or hijack
other users’ web requests, or intercept and modify the database
queries to steal sensitive data beyond their privileges.
Alternatively, at the database end, we suppose that the database
server will not be entirely taken over by the attackers. Attackers
may wallop the database server through the web server or, more
directly, by submitting SQL queries, they may acquire and infect
sensitive data within the database. These assumptions are practical
since, in most cases, the database server is not out in the open to
the public and is therefore thorny for attackers to completely
take over.
We assume no prior knowledge of the source code or the application
logic of web services deployed on the web server. In addition,

Abstract
Web-Delivered Services became an integral part of our daily life which enables us to communicate the personal information from
anywhere. To manage this and to deal with the data complexity, web services have stimulated to a multitier design front-end logic and
data from web server are outsourced to a database or file server. In this paper, we present Double Guard, an IDS system that models
the network behavior of user sessions across both the front-end web server and the back-end database. By monitoring the both web
and database activity it can identify the attacks that the IDS could not be identifying properly. We implemented Double Guard using
an Apache web server with MySQL and deployed in processed real-world traffic over both dynamic and static web applications.
Double Guard, finally able to expose a wide range of attacks greater accuracy for static and dynamic web services.

Key words
web server, dynamic web, double guard, IDS

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

171

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

we are analyzing only network traffic that reaches the web server
and database. We assume that no attack would occur during the
training phase and model building.

A. Architecture and Confinement
All network traffic, from both legitimate users and adversaries,
is received intermixed at the same web server. If an attacker
compromises the web server, he/she can potentially affect all
future sessions (i.e., session hijacking). Assigning each session to
a dedicated web server is not a realistic option, as it will deplete
the web server resources. To achieve similar confinement while
maintaining a low performance and resource overhead, we use
lightweight virtualization.
It is possible to initialize thousands of containers on a single
physical machine, and these virtualized containers can be discarded,
reverted, or quickly reinitialized to serve new sessions. A single
physical web server runs many containers, each one an exact copy
of the original web server. Our approach dynamically generates
new containers and recycles used ones. As a result, a single
physical server can run continuously and serve all web requests.
However, from a logical perspective, each session is assigned to
a dedicated web server and isolated from other sessions. Since
we initialize each virtualized container using a read-only clean
template, we can guarantee that each session will be served with a
clean web server instance at initialization. We choose to separate
communications at the session level so that a single user always
deals with the same web server. Sessions can represent different
users to some extent, and we expect the communication of a single
user to go to the same dedicated web server, thereby allowing us
to identify suspect behavior by both session and user. If we detect
abnormal behavior in a session, we will treat all traffic within
this session as tainted. If an attacker compromises a vanilla web
server, other sessions’ communications can also be hijacked. In our
system, an attacker can only stay within the web server containers
that he/she is connected to, with no knowledge of the existence of
other session communications. We can thus ensure that legitimate
sessions will not be compromised directly by an attacker.
Fig. 1 illustrates the classic three-tier model. At the database side,
we are unable to tell which transaction corresponds to which
client request. The communication between the web server and
the database server is not separated, and we can hardly understand
the relationships among them. Fig.2 depicts how communications
are categorized as sessions and how database transactions can be
related to a corresponding session. According to Fig.1, if Client2 is
malicious and takes over the web server, all subsequent database

transactions become suspect, as well as the response to the client.
By contrast, according to Fig.2, Client 2 will only compromise
the VE2, and the corresponding database transaction set will be
the only affected section of data within the database.

B. Building the mapping Model
This container-based and session- separated web server
architecture not only provide the isolated information flows that
are separated in each container session but also enhances the
security performances. It allows us to recognize the mapping
between the web server desires and the ensuing DB queries, and to
utilize such a mapping model to detect anomalous behaviors on a
session/client level. In typical three-tiered web server architecture,
the web server receives HTTP requests from user clients and then
issues SQL queries to the database server to retrieve and update
data. These SQL queries are causally dependent on the web request
hitting the web server. We want to model such causal mapping
relationships of all legitimate traffic so as to detect abnormal/
attack traffic.
 In practice, we are unable to build such mapping under a classic
three-tier setup. Although the web server can distinguish sessions
from different clients, the SQL queries

Fig. 1: classic three tire model

are mixed and all from the same web server. It is impossible for a
database server to determine which SQL queries are the results of
which web requests, much less to find out the relationship between
them. Even if we knew the application logic of the web server
and were to build a correct model, it would be impossible to use
such a model to detect attacks within huge amounts of concurrent
real traffic unless we had a mechanism to identify the pair of the
HTTP request and SQL queries that are causally generated by the
HTTP request. However, within our container-based web servers,
it is a straightforward matter to identify the causal pairs of web
requests and resulting SQL queries in a given session. Moreover,
as traffic can easily be separated by session, it becomes possible
for us to compare and analyze the request and queries across
different sessions. Section 4 further discusses how to build the
mapping by profiling session traffics.
Once we build the mapping model, it can be used to detect abnormal
behaviors. Both the web request and the database queries within
each session should be in accordance with the model. If there exists
any request or query that violates the normality model within a
session, then the session will be treated as a possible attack.

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

172

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

III. Double Guard
Vulnerabilities Due to inappropriate Input Processing Cross Site
Scripting is a distinctive attack method where in attackers embeds
malevolent client scripts via genuine user inputs. In Double Guard,
the entire user input values are normalized so as to build a mapping
model based on the structures of HTTP requests and DB queries.
Once the malicious user inputs are normalized, Double Guard
cannot detect attacks hidden in the values. These attacks can occur
even without the databases. Double Guard offers a complementary
approach to those research approaches of detecting web attacks
based on the characterization of input values [5,6,7].

A. Possibility of Evading Double Guard
Our hypothesis is that an mugger can obtain “full control” of the
web server thread that he/she connects to. That is, the attacker can
only take over the web server occurrence running in its remote
container. Our architecture ensures that every client be definite
by the IP address and port container pair, which is exclusive for
each session. Therefore, hijacking an existing container is not
viable because traffic for other sessions is never directed to an
full container. If this were not the case, our architecture would
have been similar to the conventional one where a single web
server runs many different processes. Moreover, if t he database
authenticates the sessions from the web server, then each container
connects to the database using either admin user account or non
admin user account and the connection is authenticated by the
database. In such case, an attacker will authenticate using a non
admin account and will not be allowed to issue admin level queries.
In other words, the HTTP traffic defines the privileges of the
session which can be extended to the back-end database, and
a non admin user session cannot appear to be an admin session
when it comes to back-end traffic.Within the same session that
the attacker connects to, it is allowed for the attacker to launch
“mimicry” attacks. It is possible for an attacker to discover the
mapping patterns by doing code analysis or reverse engineering,
and issue “expected” web requests prior to performing malicious
database queries. However, this significantly increases the efforts
for the attackers to launch successful attacks. In addition, users
with non admin permissions can cause minimal (and sometimes
zero) damage to the rest of the system and therefore they have
limited incentives to launch such attacks.By default, Double
Guard normalizes all the parameters. Of course, the choice of the
normalization parameters needs to be performed vigilantly. Double
Guard offers the ability of normalizing the parameters so that
the user of Double Guard can choose which values to normalize.
For example, we can choose not to normalize the value “admin”
in “user = ‘admin’.” Likewise, one can choose to normalize it
if the administrative queries are structurally different from the
normal-user queries, which is common case. Additionally, if
the database can authenticate admin and non admin users, then
privilege escalation attacks by changing values are not feasible
(i.e., there is no session hijacking).

IV. Modeling Deterministic Mapping
Due to their diverse functionality, special web applications exhibit
dissimilar characteristics. Many websites serve only fixed content,
which is updated and often managed by a Content Management
System (CMS). For a static website, we can build an accurate
model of the mapping relationships between web requests and
database queries since the links are static and clicking on the same
link always returns the same information. However, some websites

(e.g., blogs, forums) allow regular users with non administrative
privileges to update the contents of the server data. This creates
tremendous challenges for IDS system training because the HTTP
requests can contain variables in the passed parameters.
For example, instead of one-to-one mapping, one web request to
the web server usually invokes a number of SQL queries that can
vary depending on type of the request and the state of the system.
Some requests will only retrieve data from the web server instead
of invoking database queries, meaning that no queries will be
generated by these web requests. In other cases, one request will
invoke a number of database queries. Finally, in some cases, the
web server will have some periodical tasks that trigger database
queries without any web requests driving them. The challenge
is to take all of these cases into account and build the normality
model in such a way that we can cover all of them.
All communications from the clients to the database are separated
by a session. We assign each session with a unique session ID.
Double Guard normalizes the variable values in both HTTP
requests and database queries, preserving the structures of the
requests and queries. To achieve this, Double Guard substitutes
the actual values of the variables with symbolic values

A. Modeling for Static Websites
In the case of a static website, the nondeterministic mapping does
not exist as there are no available input variables or states for static
content. We can easily classify the traffic collected by sensors
into three patterns in order to build the mapping model. As the
traffic is already separated by session, we begin by iterating all of
the sessions from 1 to N. For each rm Є REQ, we maintain a set
AR to record the IDs of sessions in which rm appears. The same
holds for the database queries; we have a set AQsfor each Qs Є
SQL to record all the session IDs. To produce the training model,
we leverage the fact that the same mapping pattern appears many
times across different sessions.
The algorithm we used to monitor the system is-

1. Monitoring algorithm
Input: system log•	
1. Extract the request arrivals for all sessions, page viewing •	
time and the sequence ofN requested objects for each user
from the system log.
2. Compute the entropy of the requests per session using •	
the formula:
H(R) = -j Pj(rj) log Pj(rj)•	
3. Compute the trust score for each and every user based on •	
their viewing time and accessing behaviour .

2. Detection Algorithm
Input the predefined entropy of requests per session and the •	
trust score for each user.
Define the threshold related with the trust score (Tts)•	
Define the threshold for allowable deviation (Td)•	
For each session waiting for detection•	
Extract the requests arrivals•	
Compute the entropy for each session using (4)•	
Hnew(R) = -j Pj(rj) log Pj(rj)•	
Compute the degree of deviation:•	
D = |Hnew(R)| - |H(R)|•	
If the degree of deviation is less than the allowable threshold •	
(Td), and user’s trust score is greater
than the threshold (Tts), then•	

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

173

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

Allow the session to get service from the web server•	
Else•	
The session is malicious; drop it•	

V. Testing for Static Websites
Once the normality model is generated, it can be engaged for
training and detection of anomalous behavior .During the testing
phase, each session is compared to the normality model. We begin
with each distinct web request in the session and, since each
request will have only one mapping rule in the model, we simply
compare the request with that rule.

A. Modeling of Dynamic Patterns
Fascinatingly, our blog website built for testing purposes shows
that, by only modeling nine fundamental operations, it can cover
most of the operations that appeared in the genuine captured traffic.
For each operation (e.g., reading an article),we build the model as
follows: in one session, we act up on only a single read operation,
and then we get hold of the set of triggered database queries. Since
we cannot guarantee that each user perform only a single operation
inside each session in real traffic, we use a tool called Selenium
[7,8] to separately produce training traffic for each operation. In
each session, the tool performs only one basic operation. When we
repeat the operation multiple times using the tool, we can easily
substitute the different parameter values that we want to test (in
this case, reading different articles).
Finally, we obtain many sets of queries from one sessionand
assemble them to obtain the set of all possible queries resulting
from this single operation.

VI. Detection for Dynamic Websites
Once we build the separate single operation models, they can
be used to detect abnormal sessions. In the testing phase, traffic
captured in each session is compared with the model. We also
iterate each distinct web request in the session. For each request,
we determine all of the operation models that this request belongs
to, since one request may now appear in several models. We then
take the entire corresponding query sets in these models to form
the set CQS. For the testing session i, the set of DB queries Q
should be a subset of the CQS. Otherwise, we would find some
unmatched queries. For the web requests in Rii, each should either
match at least one request in the operation model or be in the set
EQS. If any unmatched web request remains, this indicates
that the session has violated the mapping model.

Fig. 2 : 	 Model prototype

VII. Performance Evaluation
We employed a model of Double Guard using a web server with
a back-end DB. We also set up two testing websites, one static
and the other dynamic. To evaluate the detection results for our
system, we investigated four classes of attacks, as discussed in
Section 3, and measured the false positive rate for each of the
two websites.

A. Implementation
In our prototype, we prefer to dispense each user session into a
different container; nevertheless, this was a design pronouncement.
For instance, we can allocate a new container per each new IP
address of the client. In our accomplishment, containers were
salvaged based on events or when sessions time out. We we reable
to use the same session tracking methods as put into practiced
by the Apache server (cookies, mod_usertrack,etc.) because
lightweight virtualization containers do not enforce high memory
and storage overhead.
Thus, we could maintain a large number of parallel-running
Apache instances similar to the Apache threads that the server
would maintain in the scenario without containers. If a session
timed out, the Apache instance was terminated along with its
container. In our prototype implementation, we used a 60-minute
timeout due to resource constraints of our test server. However,
this was not a limitation and could be removed for a production
environment where long-running
To test our system in a dynamic website scenario, we setup a
dynamic Blog using the Word press [8] blogging software. In our
deployment, site visitors were allowed to read, post, and comment
on articles. All models for the received front-end and back-end
traffic were generated using these data.
We discuss performance overhead, which is common for both static
and dynamic models, in the following section. In our analysis, we
did not take into consideration the potential for caching expensive
requests to further reduce the end-to-end latency; this we left for
future study.

B. Attack Detection
Formerly the model is built, it can be used to perceive malicious
sessions. For our static website testing, we used the fabrication
website, which has regular visits of around 50100 sessions per
day. We accumulated regular traffic for this construction site,
which totaled 1,172 sessions. We used the sql map [12], which
is an automatic tool that can generate SQL injection attacks. Web
server scanner tool that executes wide-ranging tests, and were used
to engender a number of web server-aimed http. We performed
the equivalent attacks on both Double Guard and a classic three
tier architecture with a network IDS at the web server side and a
database IDS at the database side. As there is no popular anomaly-
based open source network IDS available, we used Snort [1,9] as
the network IDS in front of the web server, and we used Green
SQL as the database IDS. For Snort IDS, we downloaded and
enabled all of the default
rules from its official website.
We put Green SQL into database firewall mode so that it would
automatically white list all queries during the learning mode and
block all unknown queries during the detection mode. Table 2
shows the experiment results where Double Guard was able to
detect most of the attacks and there were 0 false positives in our
static website testing.

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

174

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

VIII. Conclusion
We proposed an intrusion detection system that builds models
of normal performance for multi tiered web applications from
both front-end web (HTTP) requests and back-end database
(SQL) queries. Disparate earlier approaches that correlated or
summarized alerts generated by self-governing IDSs, Double
Guard forms a container-based IDS with multiple input streams
to produce alerts. We have justified that such association of
input streams provides a better characterization of the system for
abnormality detection n because the intrusion sensor has a more
precise normality replica that identifies a wider range of threats.
We achieved this by isolating the flow of in format ion from each
web server session with a lightweight virtualization.

References
[1] 	 Meixing Le, AngelosStavrou, Brent ByungHoon Kang,

“DoubleGuard: Detecting Intrusions in Multitier Web
Applications” IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/
AUGUST 2012

[2] C. Anley, “Advanced Sql Injection in Sql Server
Applications,”technical report, Next Generation Security
Software,Ltd., 2002.

[3] 	 K. Bai, H. Wang, and P. Liu, “Towards Database Firewalls,”
Proc.Ann. IFIP WG 11.3 Working Conf. Data and Applications
Security(DBSec ’05), 2005.

[4] 	 B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-
BasedSignature Database for Hybrid Intrusion Detection
Systems,”Security and Comm. Networks, vol. 2, no. 6, pp.
457-475, 2009.

[5] D. Bates, A. Barth, and C. Jackson, “Regular
ExpressionsConsidered Harmful in Client-Side XSS Filters,”
Proc. 19th Int’lConf. World Wide Web, 2010.

[6] 	 M. Christodorescu and S. Jha, “Static Analysis of Executables
toDetect Malicious Patterns,” Proc. Conf. USENIX Security
Symp.,2003.

[7] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler:An Approach for the Anomaly-Based Detection
of State Violationsin Web Applications,” Proc. Int’l Symp.
Recent Advances in IntrusionDetection (RAID ’07), 2007.

[8] 	 H. Debar, M. Dacier, and A. Wespi, “Towards a Taxonomy
ofIntrusion-Detection Systems,” Computer Networks, vol.
31, no. 9,pp. 805-822, 1999.

[9] 	 V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
“TowardAutomated Detection of Logic Vulnerabilities in
Web Applications,”Proc. USENIX Security Symp., 2010.

[10] Y. Hu and B. Panda, “A Data Mining Approach for
DatabaseIntrusion Detection,” Proc. ACM Symp. Applied
Computing (SAC),H. Haddad, A. Omicini, R.L. Wainwright,
and L.M. Liebrock, eds.,2004.

[11] Y. Huang, A. Stavrou, A.K. Ghosh, and S. Jajodia,
“EfficientlyTracking Application Interactions Using
Lightweight Virtualization,”Proc. First ACM Workshop
Virtual Machine Security,2008.

[12] H.-A. Kim and B. Karp, “Autograph: Toward Automated
Distributed Worm Signature Detection,” Proc. USENIX
SecuritySymp., 2004.

[13] C. Kruegel and G. Vigna, “Anomaly Detection of Web-
BasedAttacks,” Proc. 10th ACM Conf. Computer and Comm.
Security(CCS ’03), Oct. 2003.

[14] S.Y. Lee, W.L. Low, and P.Y. Wong, “Learning Fingerprints

for aDatabase Intrusion Detection System,” ESORICS: Proc.
EuropeanSymp. Research in Computer Security, 2002.

 SrinivasaRao Jalasutram received
his B.Tech degree in Information
Technology and Engineering from
Paladugu Parvathi Devi College
of Engineering & Technology,
surampal l , near Nunna,
Vijayawada, A.P, India, in 2012.
Currently pursuing M.Tech in
Lakireddy Bali Reddy College of
Engineering, Mylavaram, India.
His research interest includes:
Network security.

M. Mahesh Kumar received
her B.Tech degree in IT from
Koneru Lakshmaiah College
Of Engineering. Vaddeswaram.
(Nagarjuna University) in 2010
and completed his M.Tech degree
in Computer CSE from JNTU
Kakinada in 2013. Currently
working as an Assistant Professor
in Lakireddy Bali Reddy College
of Engineering, mylavaram. His
research interest includes: Network
security and image processing.

