
International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

96

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2013, IJARCST All Rights Reserved

Software Testing With NFR Using Formal Specification
and Model Based Technique - A Step Ahead to Produce

High Quality Software
IL. Amudha, IIT.M. Nithya, IIII. Infant Raj

I,II,IIIAssistant Professor, Dept. of CSE, K. Ramakrishnan College of Engineering

I. Introduction
We use testing to find whether our software produces the expected
results or not. Testing is now being automated by software tools
that generated test cases. But many of today’s automatic test
generating softwares use black box and white box testing and
deterministic finite automata. But a model more powerful is
required to describe the operational behaviour of the software
and find defects and shortcomings to a huge percentile. The
following sections describe i) why functional requirements which
are preferred by many and what are its limitations, ii) Why NFR
is not widely preferred by many, its limitations and benefits, iii)
How formal specifications can help to build a model that is more
accurate in finding defects.
Model based testing (MBT) is an application of model based
design for designing and optionally also executing artifacts to
perform software testing or system testing. Models can be used
to represent the desired behaviour of a system under test (SUT),
or to represent testing strategies and a cost environment. Several
model based languages are available such VDM, Z, B is available
to build a model of the intended behaviour and languages.
NFR is considered to produce high quality acceptable software.
Most of software developers and testing people prefer functional
requirements for its simplicity. Comparison of Functional
requirement testing and non-Functional requirement testing is
given in Table 1.
Mostly Functional testing follows white box testing methods with
fixed steps whereas Non functional testing uses behavioural or
black box testing strategies[1].

Table 1 : Comparison of FR and NFR testing methods
FR Testing NFR Testing
‘What’ the system must do? ’How’ the system must

accomplish ‘What’?
Involves product features and
functionality

Involves quality factor

Test is done through simple
steps to check with expected
results

Testing yields huge data set.
Analysis is needed

Focus : Defect Detection Focus: Qualification of
results

Testing involves unit &
integration level

Testing is system level

Failure is normally due to
code

Failure is due to code design
and architecture.

Testing is easy because of well
defined goal

Difficult due to its inability
to operationalize the soft
goals into concrete testable
objective

Clear pass/fail criteria Results must be quantitatively
documented

II. Process of Model Based Testing
Further to the above points unlike functional testing, non-functional
testing requires configuration changes for each test case. Also NFR
testing requires knowledge and experience of product domain,
design, architecture and statistical skills.

1. Advantages of Using Model Based Language
By using testing and formal models together, the software
development cost can be reduced, by applying the testing steps
well ahead, before they become a big problem at the end, if it is
not identified and eliminated in the early stages of development.
MBT models real life situations more concretely and yields good
set of test cases from abstract formal models.

Abstract
This paper provides an overview of model based testing using formal language specification. Testing is an inevitable module in software
development that ensures the correctness of a software. Although many methods and tools are available for testing no software is
100% complaint free. A good testing should aim at finding more bugs rather than hiding them. Our current work is to find a better
methodology to improve the quality of software. Model based testing can be sued to represent the behaviour of the system and used of
formal models will reduce the development and maintenance cost, thereby also improving the quality of the software developed. We
propose a combined approach of two difficult and rare techniques i)Non-functional requirement testing and ii)Formal specification.
Test cases generated with this method proves the improvement in finding bugs in the software.

Keywords
Non Functional Requirements, Model Based Testing, Formal Languages, State Diagrams, Test Cases, Test Generation.

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

97

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2013

Fig. 1 : Process flow of MBT

2. Model Based Paradigm
Utting et al has discussed about seven dimension of model based
testing[5].
The subject of the model can be either the intended behaviour or
the environment in which the software is going to be used.
The second classification defines the redundancy, where 2 methods
can be adopted: one where code generation and test case generation
uses a common method (shared model) and the second method uses
different methods for code generation and test case generation.
(separate test model).
The third classification is about the characteristics of the model: it
may be deterministic or non-deterministic, with changing timing
constraints and discrete, continuous or hybrid systems may be
under test.
The fourth dimension is the model paradigm. Many notations
exists to describe the model :
 i) 	 State-based,
ii) 	 Transition-based,
iii) 	 History-based
iv) 	 Functional
v) 	 Operational,
vi) 	 Stochastic and
vii) 	Data-flow.

These different modelling notations can be used for behavioural
testing models.

Fig. 2 : Types of model based testing

III. Formal Methods
The formal specifications makes it more easier for the person who
is testing the software, to be more clear about what is expected
for a system to test? There are many formal specifications like
Finite state based language, Specification language, Model based
languages and Algebraic languages[3]. Out of which our concern
is about Finite state based language and its methodologies.

1. Finite state based language
At any state a tester has a specific set of inputs to choose from.
This set of inputs varies depending on the exact “state” of the
software. This characteristic of software makes state-based models
a logical fit for software testing: software is always in a specific
state and the current state of the application governs what set of
inputs testers can select from.
Finite state machines/finite automata have been around even before
the inception of software engineering. Using finite state models in
the design and testing of computer hardware components has been
long established and is considered a standard practice today[4].
When Finite state machines are used for software design and
testing a lot of coding time is saved and the quality of the software
developed is improved.
A finite state machine can only be in one state at any one time. The
occurrence of a transition from one state to another is exclusively
dependent on an input in I.
A finite state machine can be a state diagram or a step by step
process diagram that reaches a destination after some finite set
of actions or input sequence.

Timeout

Event
wait

Event
resumed

Suspend

Activate

Admit Release

Dispatc
h

Ne
wW

Ready Running
Exit

Suspend Blocked

Fig. 3 : State diagram of any process / product

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

98

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2013, IJARCST All Rights Reserved

Formal definition of finite state machines:
A finite state machine representing a software system is defined
as a quintuple (Q,I, T,F, D), where

Q is the set of all states of the system.•	
I is the set of inputs of the system •	
T is a function that determines whether a transition occurs •	
when an input is applied to the system in a particular state.
F is the set of final states the system can end up in when it •	
terminates.
D is the destination state into which the software is •	
launched.

2. Model Based Formal Specifications Testing
Methods

A. Z-Notation
 Z is based on the standard mathematical notation used in axiomatic
set theory, lambda calculus, and first-order predicate logic. All
expressions in Z notation are typed, thereby avoiding some of
the paradoxes of naive set theory. Z contains a standardized
mathematical toolkit of commonly used mathematical functions
and predicates.

B. B Method
The B-Method is a formal method that uses concepts of First
Order Logic, Set Theory and Integer Arithmetic to specify Abstract
State Machines. Beginning with an informal set of requirements,
which is usually written using natural language, an abstract model
is created[7]. The B-Method’s initial abstract model is called
Machine. A machine can be refined into one or more Refinement
modules. It is derived from a Machine or another Refinement and
the conformance between the two modules must be proved.

C. VDM
Vienna Development Method Specification Language covers
the interface-requirements of a web-based application. It uses
a framework to support the transformation of the conventional
SRS to a design specification, and a Finite State Machine based
verification model, to test the design specification against the
SRS[8].

IV. Generating Tests
Generating tests from a model depends on the nature of the model.
Finite state machines, is as simple as implementing an algorithm
that randomly traverses the state transition diagram and moves
through the sequences of arc along the generated paths. They
define the test and outcome. The sequence of labels in Fig 3.
decides whether the process ends after a finite number of steps
or not.

V. Analysing Test Results
Evaluating test results is perhaps the most difficult step in testing
process. Testers must determine whether the software generated
the correct output given the sequence of test inputs applied to
it. In practice, this means verifying screen output, verifying the
values of internally stored data and establishing that time and
space requirements were met.
During traditional testing, tests are conceived and executed one-
at-a-time or in batch. Suppose, e.g., that a tester was able to run
300 test cases and exactly 50 bugs were found as a result. At the
end of such a test, one can claim only that 300 tests were run and

50 bugs were found. What if the 301st test case makes a wide
change in the results summarized. MBT does verification of states
at this point.
Studies show that testing a variety of applications has been met
with success when MBT was employed.

VI. Limitations in Model Based Testing
Almost every research on model based testing agrees on one thing:
deployment of model based testing into an organization requires
considerable efforts and investments.

1. Testers should be extremely skilled.
The people who do testing should be more familiar with the
software model and should know the concept of state machines
with their variations, input and output parameters. They should
be skilled in Automata theory and languages and tools used for
testing.

2. A large initial effort in terms of man-hours is
required.
Since all constraints must be considered the software need to be
modularized and more people should be put to work and takes more
hours for launching the tests and integrating together again.

3. Models themselves have also several drawbacks
Even a very small software application may have too many
states to comply with all tasks and requirements. In such case
the maintenance becomes a tedious task.
To reap the most benefit from MBT, substantial investment needs
to be made. Skills, time, and other resources need to be allocated
for making preparations, overcoming common difficulties, and
working around the major drawbacks.

VII. Application Area
Before using model-based testing, we must be sure that the
approach is suitable for the current environment and application.
The creation of test models is clearly very large but this must
be recouped by the lower maintenance costs when the system
is ready for use. Low maintenance costs may be predicted, for
example, if the system is planned to have only a short operational
life or it is expected that there will be mainly few changes to the
system required by the users (and its environment). Obviously
the application must be appropriate for modelling in a supported
notation. Many switching applications have been found to be
mainly suitable, as they are well-suited to modelling as a state
model and there is good tool support for switching applications
[4]. The application should also be considered significant enough
to warrant the cost of model-based testing. If high quality is not
important to the customer then model based testing will be of less
use in terms of cost efficiency for the users

VIII. Conclusion
Testing based on formal specification guides test case selection
by precisely pointing out the behaviour that needs to be tested.
The main goal is to cover all possible behaviours that can be
observed from specification. This current paper focuses on formal
specifications in deriving test cases using MBT. The results can be
even further improved, if this method is combined with unifying
theories of programming in finding the defects in a software [6,
11, 12].

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2015)

99

Vol. 3, Issue 4 (Oct. - Dec. 2015)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2013

References
[1]	 International Journal of Software Engineering &

Applications (IJSEA), Vol.3, No.4, July 2012 ISSUES IN
TESTING OF SOFTWARE WITH NFR,Pratima Singh and
Anil Kumar Tripathi.

[2]	 Practical Model-Based Testing: A Tools Approach, Mark
Utting and Bruno Legeard, ISBN 978-0-12-372501-1,
Morgan-Kaufmann 2007.

[3] 	 International Journal of Advanced Research in Computer
Science and Software Engineering Formal methods: A
Complementary Support for Testing, Monika Singh

[4] 	 Using Formal Specifications to Support Model Based Testing
ASDSpec: A Tool Combining the Best of Two Techniques,
A.P. van der Meer, R. Kherrazi, M. Hamilton

[5] 	 A Taxonomy of Model-Based testing, Utting, Pretschner
and Legeard.

[6]	 Testing techniques in software engineering, Paulo Borba,
Ana Cavalcanti, Augusto Sampaio, Jim woodlock, Eds,
Springer Edition, ISBN 978-81-322-1478-7

[7]	 Complementing the B-Method with Model-Based Testing?
Ernesto C. B. de Matos Federal Univeristy of Rio Grande
do Norte

[8]	 A VDM-based Approach for Specifying and Testing
Requirements of Web-Applications Souvik Sengupta, Ranjan
Dasgupta, International Conference on Information and
Communication Technologies (ICICT 2014)

[9] 	 E. C. B. Matos and A. M. Moreira. BETA: A B Based Testing
Approach. In R. Gheyi and D. Naumann, editors, Formal
Methods: Foundations and Applications, volume 7498 of
Lecture Notes in Computer Science, pages 51-66. Springer
Berlin Heidelberg, 2012.

[10] 	Müller A. VDM—The Vienna Development Method. Bachelor
thesis in” Formal Methods in Software Engineering”,
Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, Austria;2009.

[11] 	 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 41, NO. 10, OCTOBER 201,”5Automated Checking
of Conformance toRequirements Templates Using
NaturalLanguage Processing” Chetan Arora, Mehrdad
Sabetzadeh, Member, IEEE, Lionel Briand, Fellow, IEEE,
andFrank Zimmer, Member, IEE.

[12] 	 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 41, NO. 11, NOVEMBER 2015,”A Survey on Load
Testing of Large-Scale Software Systems”, Zhen Ming Jiang,
Member, IEEE and Ahmed E. Hassan, Member, IEEE

[13]	 Software Engineering: A Practitioner’s Approach, Roger
S.Pressman, McGraw-Hill Higher Education;

